

Probability Distributions

Advanced Probability

Random Variable: A random variable is a real valued function defined over the sample space. (discrete or continuous).

A **discrete random variable** takes the values that are finite or countable. For example when we consider the experiment of tossing of 3 coins, the number of heads can be appreciated as a discrete random variable (X). X would take 0, 1, 2 and 3 as possible values.

A continuous random variable takes values in the form of intervals. Also, in the case of a **Continuous Random Variable** P(X = c) = 0, where c is a specified point.

Heights and weights of people, area of land held by individuals, etc., are examples of continuous random variables.

Probability Mass Function (p.m.f): If X is a discrete random variable, which can take the values x_1, x_2, \ldots and f(x) denote the probability that X takes the value x_i , then p(x) is called the **Probability Mass Function** (p.m.f) of X. $p(x_i) = P(x = x_i)$. The values that X can take and the corresponding probabilities determine the probability distribution of X. We also have

(i)
$$p(x) \ge 0$$
; (ii) $\sum p(x) = 1$.

Probability density function (**P.d.f**): If X is a continuous random variable then a function f(x), $x \in I$ (interval) is called a probability density function. The probability statements are made as $P(x \in I) = \int_{I}^{I} f(x) dx$

We also have,

(i)
$$f(x) \ge 0$$
 (ii) $\int_{-\infty}^{\infty} f(x) dx = 1$

The probability $P(X \le x)$ is called the cumulative distribution function (c.d.f) of X and is denoted by F(X). It is a point function. It is defined for discrete and continuous random variables.

The following are the properties of probability distribution function F(x),

- (i) $F(x) \ge 0$.
- (ii) F(x) is non-decreasing i.e., for x > y, $F(x) \ge F(y)$.
- (iii) F(x) is right continuous.
- (iv) $F(-\infty) = 0$ and $F(+\infty) = 1$. Also,
- (v) $P(a < x \le b) = F(b) F(a)$. For a continuous random variable
- (vi) $Pr{x < X \le x + dx} = F(x + dx) F(x) = f(x) dx$; where dx is very small

(vii)
$$f(x) = \frac{d}{dx} [F(x)]$$
 where;
(a) $f(x) \ge 0 \forall x \in \mathbb{R}$.
(b) $\int_{\mathbb{R}} f(x) dx = 1$.

Mathematical Expectation [E(X)]

Mathematical Expectation is the weighted mean of values of a variable.

If X is a random variable which can assume any one of the values $x_1, x_2, ..., x_n$ with the respective probabilities $p_1, p_2, ..., p_n$, then the mathematical expectation of X is given by $E(X) = p_1x_1 + p_2x_2 + ... + p_n x_n$ For a continuous random variable,

 $E(X) = \int_{-\infty}^{+\infty} f(x) dx$ where f(x) is the p.d.f. of X.