

**SOLUTIONS & ANSWERS FOR KERALA ENGINEERING
ENTRANCE EXAMINATION-2019 – Paper - 1
VERSION – A1**

[PHYSICS & CHEMISTRY]

1. Ans: $ML^{-1} T^{-2}$

$$\text{Sol: } [P] = \frac{[F]}{[A]} = \frac{MLT^{-2}}{L^2} = ML^{-1} T^{-2}$$

2. Ans: $0.5m/s^2$

Sol: Stopping distance

$$S = \frac{v^2}{2a}$$

$$a = \frac{v^2}{2S} = \frac{10^2}{2 \times 100} = 0.5m/s^2$$

3. Ans: The closeness of the mean of the readings to the true value

Sol: the closeness of the mean of the reading to the true value

4. Ans: $v_{15} = 100 m/s$ and $v_{25} = 25m/s$

Sol: velocity = Area under v-t graph

$$v_{15} = \frac{1}{2} \times 10 \times 10 + 5 \times 10 = 100m/s$$

$$v_{25} = \frac{1}{2} \times 10 \times 10 + 5 \times 10 + \frac{1}{2} \times 10 \times 10 \\ = 150m/s$$

5. Ans: 50 J

$$\text{Sol: } v = u + at \\ = 5 + 1 \times 5 = 10m/s$$

$$= KE = \frac{1}{2} Mv^2 = \frac{1}{2} \times 1 \times 10^2 = 50 J$$

6. Ans: At time $t = 0$ s, there is a deceleration of the object

$$\text{Sol: } v(t) = v_0 - 5t + 5t^2$$

$$a(t) = \frac{dv}{dt} = -5 + 10t$$

At $t = 0$ s

$$A = -5 + 10 \times 0 = -5$$

7. Ans: 2.5km

Sol: Distance covered across river $S_H = 2km$

$$\frac{S_H}{v_b} = \frac{2}{4} = 0.5\text{hrs}$$

Time =

Distance covered along river

$$S_v = v_r \times t$$

$$= 3 \times 0.5 = 1.5\text{km}$$

$$S = \sqrt{S_H^2 + S_v^2} = \sqrt{2^2 + 1.5^2}$$

$$2.5\text{km}$$

8. Ans: $400\pi^2 m/s^2$

$$\text{Sol: } \omega = 2\pi f = 2\pi \times 10 = 20\pi$$

$$a_c = r\omega^2 = 1 \times (20\pi)^2 = 400\pi^2 m/s^2$$

$$\vec{k} = \frac{2\pi}{3} \hat{z}$$

9. Ans: The wave vector is given

Sol: Theory

10. Ans: The radiation is in the form of an electromagnetic wave which carries momentum but not energy.

Sol: Theory

11. Ans: The magnetic field is directed along the loop L

Sol: Theory

12. Ans: 10^{16}

Sol: Energy emitted per second = power of the source
 $nhu = p$

$$n \times 6.63 \times 10^{-34} \times \frac{1}{6.63} \times 10^{16} = 10^{-2}$$

$$n = 10^{16}$$

13. Ans: Devices built using sodium can operate with ultraviolet light.

Sol: Energy associated with these wave

$$E = \frac{hc}{\lambda} = \frac{12400}{\lambda(\text{Å})} = \frac{1.24 \times 10^{-6} \times v}{c} \text{ eV}$$

$$E_1 = \frac{1.24 \times 10^{-6} \times 4 \times 10^{14}}{3 \times 10^8}$$

$$= 1.65\text{eV}$$

$$E_2 = \frac{1.24 \times 10^{-6} \times 8 \times 10^{14}}{3 \times 10^8}$$

$$= 3.30\text{eV}$$

$$E_{\text{infra}} < E_1 < E_2 < E_{\text{ultra}}$$

14. Ans: The image is magnified, real and inverted.

$$\text{Sol: } u = -9 \quad R = -12 \quad f = \frac{R}{2} = -6$$

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{-6} - \frac{1}{-9} = \frac{1}{9} - \frac{1}{6} = \frac{-1}{18}$$

$$v = -18$$

$$m = \frac{-v}{u} = \frac{-(-18)}{-9} = -2$$

15. Ans: 2660 / 17 cm

$$\text{Sol: } \frac{n_{\text{med}}}{f_{\text{med}}} = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\frac{1}{f_{\text{air}}} = [n - 1] \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$2.5 = [1.5 - 1] \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$2.5 = 0.5 \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\frac{1}{R_1} - \frac{1}{R_2} = \frac{2.5}{0.5} \quad \text{-----(1)}$$

$$\frac{1.33}{f_{\text{med}}} = [1.5 - 1.33] \times \frac{2.5}{0.5}$$

$$\frac{1.33}{f_{\text{med}}} = 0.17 \times 5$$

$$f_{\text{med}} = \frac{1.33}{0.17 \times 5} = \frac{1.33}{0.85}$$

$$= \frac{133}{0.85} = \frac{13300}{0.85}$$

$$= \frac{2660}{17} \text{ cm}$$

16. Ans: $\frac{\lambda}{\alpha}$

$$\text{Sol: } \theta = \frac{\lambda}{\alpha}$$

17. Ans: $\frac{1}{2} I_1$

$$\text{Sol: } 150\text{nm} = \frac{\lambda}{4}, \phi = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$I_1 = 4I_0 \cos^2 \left(\frac{\phi}{2} \right)$$

$$= 4I_0 \cos^2 \left(\frac{\pi}{4} \right) = 2I_0$$

$$200\text{nm} = \frac{\lambda}{3}, \phi = \frac{2\pi}{3}$$

$$I_2 = 4I_0 \cos^2 \left(\frac{\pi}{3} \right) = I_0$$

$$I_2 = \frac{I_1}{2}$$

18. Ans: $\tan^{-1}(1.33)$

$$\text{Sol: } \theta_B = \tan^{-1} \left(\frac{n_2}{n_1} \right)$$

$$= \tan^{-1}(1.33)$$

19. Ans: the height of the transmitter and the radius of the earth

Sol: Out of syllabus

20. Ans: 195 kHz to 205 kHz

$$\text{Sol: } f_C + f_m = 205\text{KH}_3$$

$$f_C - f_m = 195\text{ KH}_3$$

21. Ans: To radiate the signal to a large distance using antennas

Sol: Theory

22. Ans: a p-n semiconductor with a forward bias

Sol: Theory

23. Ans: The width of the depletion region depends on the doping level in the p-type and n-type regions

Sol: Theory

$$24. \text{ Ans: } \sqrt{\frac{2(a^5 - b^5)}{5(a^3 - b^3)}}$$

Sol: Moment of inertia of hollow sphere

= MI of outer sphere

- MI of inner sphere

$$= \frac{2}{5} M_0 a^2 - \frac{2}{5} M_i b^2$$

$$= \frac{2}{5} \rho \cdot \frac{4}{3} \pi a^3 a^2 - \frac{2}{5} \rho \cdot \frac{4}{3} \pi b^3 b^2$$

$$K = \sqrt{\frac{I}{m}} = \sqrt{\frac{\frac{2}{5} \times \frac{4}{3} \pi \rho (a^5 - b^5)}{\rho \frac{4}{3} \pi (a^3 - b^3)}}$$

$$= \sqrt{\frac{2(a^5 - b^5)}{5(a^3 - b^3)}}$$

25. Ans: 0.7 N-m

$$\text{Sol: } \tau = fR = \left(\frac{mg \sin \theta}{1 + \frac{R^2}{K^2}} \right) \times R$$

$$\begin{aligned} \tau &= \frac{2}{7} mg \sin \theta \times R \\ &= \frac{2}{7} \times 1 \times 10 \sin 30^\circ \times 0.5 \\ &= \frac{2}{7} \times 10 \times \frac{1}{2} \times 0.5 \\ &= \frac{10 \times 0.5}{7} = 0.7 \text{ Nm} \end{aligned}$$

26. Ans: 6 hours

$$\text{Sol: } R_1 = \frac{R}{2}$$

According to law of conservation of angular momentum,

$$I_1 \omega_1 = I_2 \omega_2$$

$$I_1 \frac{2\pi}{T_1} = I_2 \frac{2\pi}{T_2}$$

$$\frac{I_1}{T_1} = \frac{I_2}{T_2}$$

$$T_2 = \frac{I_2}{I_1} \times T_1$$

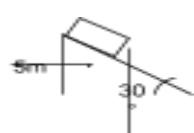
$$\begin{aligned} &= \frac{2}{5} \frac{MR^2}{4} \times 24 \\ &= \frac{2}{5} \frac{MR^2}{5} \end{aligned}$$

$$= \frac{24}{4} = 6 \text{ hours}$$

27. Ans: $\therefore \tau_H > \tau_s$

$$\text{Sol: } \tau = fR$$

Where f is the frictional force


$$f_s = \frac{2}{7} mg \sin \theta \text{ [Solidsphere]}$$

$$f_H = \frac{2}{5} mg \sin \theta \text{ [hollow sphere]}$$

$$\therefore \tau_H > \tau_s$$

28. Ans: 7 m / s

Sol:

$$v = \sqrt{2g \sin \theta S - 2\mu g \cos \theta S}$$

$$\text{From the figure, } \sin 30^\circ = \frac{5}{S}$$

$$S = \frac{5}{\sin 30^\circ} = 10 \text{ m}$$

$$\begin{aligned} v &= \sqrt{2 \times 10 \times \frac{1}{2} \times 10 - 2 \frac{1}{2\sqrt{3}} \times 10 \times \frac{\sqrt{3}}{2} \times 10} \\ &= \sqrt{100 - \frac{100}{2}} = \sqrt{100 - 50} = \sqrt{50} \approx 7 \text{ ms}^{-1} \end{aligned}$$

29. Ans: 12.6 km/s

$$\text{Sol: } V_{\text{escape}} = \sqrt{\frac{2GM}{R}}$$

$$= \sqrt{\frac{2 \times 6 \times 10^{-11} \times 8 \times 10^{24}}{6 \times 10^6}} = 12.6 \text{ km/s}$$

30. Ans: 11 years

$$\text{Sol: } T^2 \propto r^3$$

$$T \propto r^{\frac{3}{2}}$$

$$\begin{aligned} \frac{T_A}{T_B} &= \left(\frac{r_A}{r_B} \right)^{\frac{3}{2}} = \left(\frac{1}{5} \right)^{\frac{3}{2}} \\ &= \frac{1}{5\sqrt{5}} \end{aligned}$$

$$T_B = 5\sqrt{5} T_A = 5\sqrt{5} \times 1 \approx 11 \text{ years}$$

31. Ans: 0.75 mg

$$M = \frac{M_0}{t^{\frac{t_1}{2}}}$$

$$\text{Sol: } 2^{\frac{t_1}{2}}$$

$$= \frac{12}{24} = \frac{12}{2^6} = \frac{12}{2^4}$$

$$M = \frac{12}{16} = 0.75 \text{ mg}$$

32. Ans: Heavier nuclei have more neutrons than protons

Sol: Theory

33. Ans: it is a long range force

Sol: Theory

34. Ans: $^{13}\text{Al}^{27}$

Sol: isotope = same number of neutrons
 $^{8}\text{O}^{16} = 16 - 8 = 8$
 $^{7}\text{N}^{15} = 15 - 7 = 8$
 $^{6}\text{C}^{14} = 14 - 6 = 8$
 $^{13}\text{Al}^{27} = 27 - 13 = 14$
 $^{9}\text{F}^{17} = 17 - 9 = 8$

35. Ans: $1.25\pi \text{ mV}$

$$\Delta\phi = BA \left(\cos 0 - \cos \frac{\pi}{3} \right)$$

$$E = \frac{\Delta\phi}{\Delta t} = \frac{BA}{2} = \frac{B\pi r^2}{2}$$

$$= \frac{1 \times \pi \times 25 \times 10^{-4}}{2} = 12.5\pi \times 10^{-4} = 1.25\pi \text{ mV}$$

36. Ans: $ML^2 T^{-2} A^{-2}$

$$M = \frac{\phi}{i}$$

$$\frac{BA}{i} = \frac{MA^{-1} T^{-2} L^2}{A} = ML^2 T^{-2} A^{-2}$$

$$37. \text{ Ans: } \frac{11}{3\pi} A$$

Sol: Given angular frequency = 300Hz, should be frequency = 300Hz

$$I_{\text{rms}} = \frac{V}{X_L} = \frac{220}{L\omega} = \frac{220}{0.1 \times 2\pi \times 300} = \frac{11}{3\pi} A$$

$$L = 0.1$$

$$V_{\text{rms}} = 220V$$

$$f = 300\text{Hz}$$

$$38. \text{ Ans: } \frac{1}{\sqrt{LC}}$$

Sol: Condition of resonance

$$X_L = X_C$$

$$L\omega_0 = \frac{1}{C\omega_0}$$

$$\omega_0^2 = \frac{1}{LC}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

39. Ans: The efficiency of the Carnot cycle is higher for case -III

$$\eta_1 = 1 - \left(\frac{T_2}{T_1 + \Delta T} \right)$$

$$\eta_2 = 1 - \left(\frac{T_2 + \Delta T}{T_1} \right)$$

$$\eta_3 = 1 - \left(\frac{T_2 - \Delta T}{T_1} \right)$$

$$\eta_3 - \eta_1 = \frac{T_2}{T_1 + \Delta T} - \frac{(T_2 - \Delta T)}{T_1} = \frac{T_2 T_1 - T_1 T_2 + T_1 \Delta T - T_2 \Delta T + (\Delta T)^2}{(T_1 + \Delta T)(T_1)}$$

$$\frac{(T_1 - T_2) \Delta T + (\Delta T)^2}{(T_1 + \Delta T)(T_1)} > 0$$

$$\eta_3 > \eta_1 > \eta_2$$

40. Ans: 10^{-6} times the average speed of an air molecule

$$V_{\text{avg}} \propto \frac{1}{\sqrt{M}}$$

$$\frac{V_{\text{smoke}}}{V_{\text{air}}} = \sqrt{\frac{M_{\text{air}}}{M_{\text{smoke}}}} = \sqrt{\frac{1}{10^{12}}} = 10^{-6}$$

41. Ans: $\pm 0.1^\circ \text{C}$

Sol: Maximum error permitted $= \frac{1}{10^6} \text{ m}$

$$\square \alpha \Delta T = 10^{-6}$$

$$1 \times 1 \times 10^{-5} \times \Delta T = 10^{-6}$$

$$\Delta T = 0.1^\circ \text{C}$$

42. Ans: 682 K

$$V_1 = \frac{V}{20}$$

$P_1 = 50 \text{ atm}$, $T = 273\text{K}$, $P=1 \text{ atm}$

$$\frac{PV}{P_1 V_1} \propto \frac{T}{T_1}$$

$$T_1 = \frac{P_1 V_1 T}{P V}$$

$$= \frac{50 \times \frac{V}{20} \times 273}{1 \times V}$$

$$= \frac{5}{2} \times 273$$

$$= 682 \text{ K}$$

43. Ans: 5 m/s

$$\text{Sol: } K = 50 \text{ N/m}$$

$$\frac{1}{2}mv^2 = \frac{1}{2}k(\Delta x)^2$$

$$v = \sqrt{\frac{k}{m}(\Delta x)^2}$$

$$= \sqrt{\frac{50}{20 \times 10^{-3}} \times (10 \times 10^{-2})^2}$$

$$= \sqrt{\frac{50 \times 100 \times 10^{-4}}{20 \times 10^{-3}}}$$

$$= \sqrt{25} = 5 \text{ ms}^{-1}$$

44. Ans: $F_L = F_A$

Sol: Buoyant force $V \sigma g$

V – volume of block

σ – density of liquid

45. Ans: 100 N / m²

$$\text{Sol: Excess pressure of a bubble} = \frac{4T}{R_1}$$

$$\text{Excess pressure of a drop} = \frac{2T}{R_2}$$

\therefore Excess pressure of a drop

$$= \frac{2T \times 2}{R_1} = \frac{4T}{R_1}$$

Therefore the pressure difference between the inside and outside of the droplet is 100 N/m²,

46. Ans: a linear combination of terms involving h and h^2

$$\text{Sol: } \frac{1}{2}mv^2 = mg(h - h') + \frac{1}{2}k(x^2 - x'^2)$$

47. Ans Positive and negative with power integrated over a period being positive

Sol: Theory

48. Ans: Ratio of energy stored per cycle to the energy dissipated per cycle

Sol: Theory

49. Ans: dependent on the direction of projection

Sol: Theory

50. Ans: 66 m

$$\text{Sol: } S = ut + \frac{1}{2}at^2$$

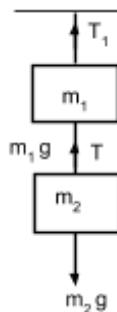
$$= 5 \times 6 + \frac{1}{2} \times 2 \times 6^2$$

$$= 30 + 36 = 66 \text{ m}$$

51. Ans: $2 \times 10^4 \text{ N}$

$$\text{Sol: } v^2 = 2 a S$$

$$a = \frac{v^2}{2S} = \frac{10^2}{2 \times 5} = \frac{100}{10} = 10$$


$$F = ma = 2000 \times 10 = 2 \times 10^4 \text{ N}$$

52. Ans: 20 kg, 20 kg

Sol: Conceptual

53. Ans: $(m_1 + m_2)g$

Sol:

$$m_2g = T$$

$$T' = T - m_1g = 0$$

$$T' = T + m_1g$$

$$= (m_1 + m_2)g$$

54. Ans: $\frac{1}{e}$ N/C, F and E against each other

$$\text{Sol: } E = \frac{F}{e} = \frac{1}{e} \text{ N/C}$$

F and E are against each other

55. Ans: 5 cm

Sol:

$$\frac{k2}{x^2} = \frac{k8}{(15-x)^2}$$

$$\frac{1}{x^2} = \frac{4}{(15-x)^2}$$

$$\frac{1}{x} = \frac{2}{15-x}$$

$$2x = 15 - x$$

$$15 = 3x, x = 5 \text{ cm}$$

56. Ans: $0V$ and $\frac{\sqrt{2}}{5} k \frac{V}{m}$

Sol: V at the centre = 0

Electric field at the centre

$$\frac{\sqrt{2} \times 2 \times k \times 5}{(5\sqrt{2})^2} = \frac{\sqrt{2}}{5} k \frac{V}{m}$$

57. Ans: The force on the dipole is zero while torque rotates the dipole on the xy -plane

Sol: Field is uniform, so $F = 0$

$$\text{But } \vec{t} = \vec{P} \times \vec{E} = P_0 E_0 (2\hat{j} - 3\hat{i})$$

Note :- This is in the direction of torque

58. Ans: $1.5nF, 9nC$

Sol: $C_{\text{eff}} = 3nF$ series $3nF$

$$= \frac{3}{2} = 1.5nF$$

$$Q = C_{\text{eff}} \times V = \frac{3}{2} \times 10^{-9} \times 6 = 9nC$$

$$\frac{1}{3} \Omega, 27A$$

59. Ans:

Sol: $R_{\text{eff}} = 1 \parallel 1 \parallel 1$

$$= \frac{1}{3} \Omega$$

$$I = (27 \times 3)A$$

$$\Rightarrow I_3 = 27A$$

60. Ans: $2V, 1mA$

Sol: No current through $10pF \Rightarrow R_{\text{eff}} = 3k\Omega$

$$V_2 = \frac{3 \times 2}{3} = 2V$$

$$i_2 = \frac{3}{3 \times 10^3} = 1mA$$

61. Ans: $8000J$

$$H = \frac{20 \times 20}{3} \times 60 = 8000J$$

62. Ans: $+\pi/2$

Sol: Conceptual

63. Ans: Driving frequency is the same as the natural frequency of the oscillator

Sol: Conceptual

64. Ans: 0.4 Seconds

Sol: $a_{\text{max}} = 8\pi = \omega^2 A$

$$v_{\text{max}} = 1.6 = \omega A$$

$$\omega = \frac{8 \times \pi}{1.6} = \frac{2\pi}{T}$$

$$\Rightarrow T = \frac{2 \times 1.6}{8} = 0.4s$$

65. Ans: $16.5m$

$$t = \frac{2L}{v} = \frac{2 \times L}{330}$$

$$= \frac{2L}{330} = 0.1$$

$$L = \frac{33}{2} = 16.5m$$

66. Ans: amplitude = $0.05 m$, frequency = $4.456Hz$ and wavelength = $3.518m$

Sol: $A = 0.05m$

$$\omega = 28 = 2\pi f$$

$$7 = \frac{28}{2 \times 3.14} \approx 4.456Hz$$

$$= \frac{2\pi}{\lambda} = 2 - 0$$

$$= \lambda = 3.14m$$

Given as $3.518m$

67. Ans: E

Sol: And logic

$$216 = \left(\frac{v}{v - v_s} \right) f$$

$$184 = \left(\frac{v}{v + v_s} \right) f$$

$$\Rightarrow (v - v_s)216 = (v + v_s)184$$

$$\Rightarrow 216v - 216v_s = 184v + 184v_s$$

$$\Rightarrow 32v = 400v_s$$

$$\Rightarrow \frac{v}{v_s} = \frac{400}{32} = \frac{100}{8} = \frac{25}{2}$$

$$f = \left(\frac{v + v_s}{v} \right) 184$$

$$= \left(\frac{v + v_s}{v} \right) 184 = \left(1 + \frac{2}{25} \right) 184$$

$$\frac{27}{25} \times 184 = 198.72 \approx 200Hz$$

68. Ans: No answer

Sol: If any one of the input is zero out is zero. The combination should be AND logic

69. Ans: make helical motion if \vec{V} is neither parallel nor orthogonal to \vec{B}

Sol: Conceptual

70. Ans: $\frac{\mu_0}{2R} I \hat{z}$

Sol: $\frac{\mu_0}{2R} I \hat{z}$ using right hand thumb rule

71. Ans: Current flowing in same direction will lead to attraction and opposite directions will lead to repulsion

Sol: Conceptual

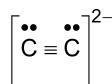
72. Ans: Its valence electrons are more tightly bound to their parent nuclii

Sol: Conceptual

73. Ans: 3

Sol: NO^+ has 14 electrons
 \therefore Bond order = 3

74. Ans: PH_3


Sol: Boiling point of group 15 hydrides increases in the order $\text{PH}_3 < \text{AsH}_3 < \text{NH}_3 < \text{SbH}_3 < \text{BiH}_3$

75. Ans: $\text{BF}_3, \text{SIF}_4, \text{PF}_3$

Sol: They are electron pair acceptors

76. Ans: One sigma and two π bonds

Sol: CaC_2 contains C_2^{2-} ion

77. Ans: Pyramidal

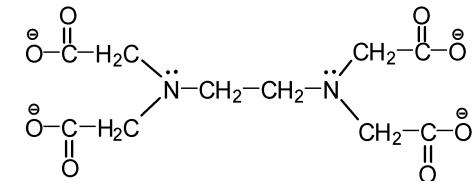
Sol: The hybridisation of Cl in ClO_3^- is sp^3 and it contains 3 bond pairs and 1 lone pair

78. Ans: Stronger acid than that in water

Acetic acid is almost completely converted to NH_4^+ ion which is a characteristic cation of the solvent
 \therefore Acetic acid behaves as a strong acid in NH_3

79. Ans: All the compounds exist

Sol: All the pentafluorides of group 15 elements except nitrogen, does exists


80. Ans: Dipole-induced dipole interaction

Sol: Water induces a dipole moment in noble gases and thereby they interact with each other

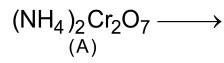
81. Ans: ZnO

Sol: ZnO when heated exhibits metal excess defect

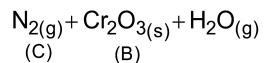
82. Ans: Two N and four O

83. Ans: Hard bases

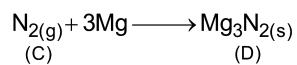
Sol: According to HSAB principle, hard acids prefer to combine with hard bases

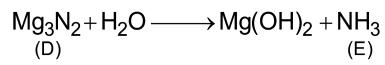

84. Ans: CN^-

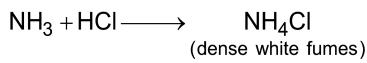
Sol: CN^- is a pseudo halide


85. Ans: (A) and (C)

Sol: $\text{PCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_3 + 3\text{HCl}$
 PCl_3 is a yellow fuming liquid


86. Ans: Mg_3N_2


(A)


(C) (B)

(C) (D)

(D) (E)

87. Ans: 34.4

Sol: Number of moles of O_2

$$\text{left} = \frac{35 - \frac{35 \times 5.5}{100}}{100} = 33.075$$

$$\text{Total no. of moles of } \text{O}_2 + \text{O}_3 \\ = 33.075 + 1.925 \times \frac{2}{3} = 34.36$$

88. Ans: (A) and (C)

Sol: Carnallite is $\text{KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}$

89. Ans: 1×10^{24}

Sol: Total energy = $100 \text{ (V)} \times 1 \text{ (A)} \times 60 \times 60 \text{ (s)}$

Energy of a

$$\text{photon, } E = \frac{hc}{\lambda}$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{550 \times 10^{-9}}$$

$$\frac{100 \times 60 \times 60 \times 550 \times 10^{-9}}{6.626 \times 3 \times 10^{-34} \times 10^8}$$

$$\text{No. of photons} \\ =$$

$$= 1 \times 10^{24}$$

90. Ans: J s

Sol: Angular momentum $= \frac{n\hbar}{2\pi}$
Unit is J s

91. Ans: 3D network of corner shared octahedra

Sol: Formula is MO_3
 O^{2-} forms 3D network with M^{6+} at the corners

92. Ans: Density of the structure II is lower than structure I

Sol: Structure I is fcc

Structure II is bcc

$$\frac{d_{\text{bcc}}}{d_{\text{fcc}}} = \frac{2 \times 3\sqrt{3} \times 4\sqrt{2}}{64} < 1$$

93. Ans: NA

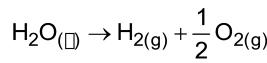
Sol: $\Delta U = q + W$
 $q = 0$

$$W = 1.33 \text{ L} - \text{atm}$$

$$= 1.33 \times 101.3 \text{ J} \\ = 134.73 \text{ J}$$

$$nR = \frac{PV}{T} = \frac{10^5 \times 10^{-3}}{300} = \frac{1}{3}$$

(assuming pressure to be 1 atm)
 $\Delta U = n C_v \Delta T$


$$134.83 = n \times \frac{3}{2} R \Delta T \quad (\text{assuming monoatomic})$$

$$\Delta T = 269$$

$$\text{Final temperature} = 269 + 300 = 569 \text{ K}$$

$$\frac{3.46}{RT}$$

94. Ans:

$$P_{\text{O}_2} + P_{\text{H}_2} = P_{\text{total}} - P_{\text{N}_2}$$

$$= 2 - 1 = 1 \text{ atm}$$

$$PV = nRT \quad \therefore n = \frac{PV}{RT}$$

$$n_{\text{H}_2} + n_{\text{O}_2} = \frac{1 \times 5.2}{RT}$$

$$1 \text{ mol } \text{H}_2\text{O}_{(+)} \rightarrow 1.5 \text{ mol of gaseous pdts} \quad (\text{H}_2 + \text{O}_2)$$

∴ No. of moles of H_2O

$$= \frac{5.2}{RT} \times \frac{2}{3} = \frac{3.46}{RT}$$

95. Ans: 16.45

Sol: 100 L solution contains 20 L CH_3OH
 \therefore Wt. of solution = $d \times V$

$$0.964 \times 100$$

$$= 96.4$$

$$\text{kg}$$

Wt. of pure CH_3OH

$$0.793 \times 20$$

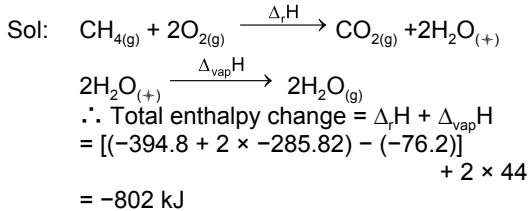
$$=$$

$$15.86 \text{ kg}$$

$$\text{Wt. \% of } \text{CH}_3\text{OH} = \frac{15.86}{96.4} \times 100$$

$$=$$

$$16.45$$


96. Ans: 1×10^{-5}

Sol: $P_{\text{O}_2} = x_{\text{O}_2} \times K_H$

$$x_{\text{O}_2} = \frac{0.434}{4.34 \times 10^4}$$

$$= 1 \times 10^{-5}$$

97. Ans: 802 kJ

98. Ans: 1.62 and 98.3

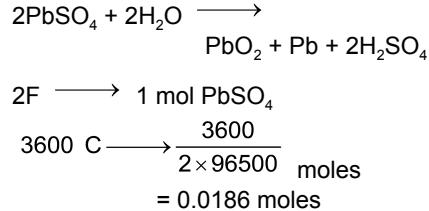
Sol: $i = \frac{60}{117.8} = 0.509$
 $\alpha_{\text{ass}} = \frac{1-i}{1-\frac{1}{n}} = \frac{1-0.509}{1-0.5} = 0.983$
 $W_B = \frac{\Delta T_b \cdot M_B \cdot W_A}{i \cdot K_b \cdot 1000} = \frac{0.36 \times 60 \times 100}{0.509 \times 2.57 \times 1000} = 1.65 \text{ g}$
 $W\% \text{ of solute} = \frac{1.65}{101.65} \times 100 = 1.62 \text{ g}$

99. Ans: 3.3

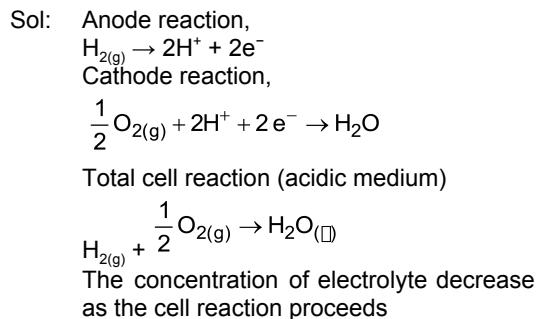
Sol: $\text{CO} + \text{Cl}_2 \rightarrow \text{COCl}_2$
Initially 2 mol 4 mol
Al eqbm $2-x$ $4-x$
Given $2 - x = 1$ $\therefore x = 1$
 $\therefore [\text{CO}]_{\text{eqbm}} = \frac{1}{10}$
 $[\text{Cl}_2]_{\text{eqbm}} = \frac{3}{10}$
 $K = \frac{[\text{COCl}_2]}{[\text{CO}][\text{Cl}_2]} = \frac{\frac{1}{10}}{\frac{1}{10} \times \frac{3}{10}} = \frac{10}{3} = 3.3$

100. Ans: $K_2 = K_1^2$

101. Ans: 0.02231 min^{-1}

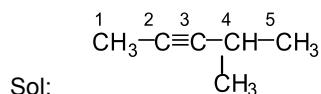

Sol: $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$
 $= \frac{2.303}{10} \log \frac{25}{20}$
 $= \frac{2.303}{10} \log \frac{5}{4}$
 $= \frac{2.303 \times 0.0969}{10}$
 $= 0.02231 \text{ min}^{-1}$
 $\frac{-2.303 \text{ RT}}{F}$

102. Ans:


Sol: $E_{\text{cell}} = E_{\text{cell}}^{\square} - \frac{2.303 \text{ RT}}{nF} \log \frac{[\text{anode}]}{[\text{cathode}]}$
 $= \frac{-2.303 \text{ RT}}{F} \log \frac{1}{10^{-1}}$
 $= \frac{-2.303 \text{ RT}}{F}$

103. Ans: 0.0186 moles

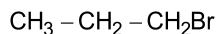
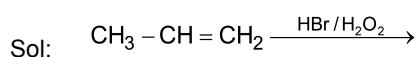
Sol: During recharging,



104. Ans: Both (A) and (C)

Open circuit voltage (OCV) is $E_{\text{cell}}^{\square}$ when $p_{\text{H}_2} = p_{\text{O}_2} = 1 \text{ bar}$
 $E_{\text{cell}}^{\square}$ remains as constant

105. Ans:
4-methyl-2-pentyne



106.Ans: Bromine test

Sol: Aniline decolourises bromine water precipitating 2,4,6-tribromoaniline. Cyclohexylamine has no reaction with bromine water

107.Ans: aromatic and anti-aromatic

Sol: Planar cyclooctatetraene does not exist because it is antiaromatic

108.Ans: 1-bromopropane

109.Ans: Histamine

Sol: Histamine is a potent vasodilator

110.Ans: Laevorotatory

Sol: Invert sugar is laevorotatory. It is an equimolar mixture of D-(+)-glucose and D-(-)-fructose

111.Ans: CH_3CH_2

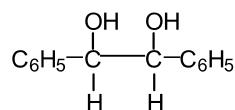
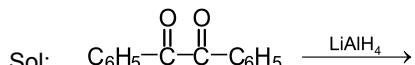
Sol: The strongest base is the conjugate base of the weakest acid. The order of acid strength of the conjugate acids is: $\text{H}_2\text{O} > \text{EtOH} > \text{CH}\equiv\text{CH} > \text{NH}_3 > \text{CH}_3-\text{CH}_3$

112. Ans: steric factor which prevents E2 mechanism

Sol: Due to steric reasons, neopentyl halide cannot undergo elimination by E2 mechanism

113.Ans: Gabriel-phthalimide synthesis

Sol: Aryl halides do not react with potassium phthalimide in Gabriel phthalimide synthesis



114.Ans: m-benzenedisulfonic acid

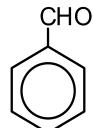
Sol: When heated with excess of fuming sulphuric acid at 473 K, benzene forms benzene-m-disulfonic acid as the main product

115.Ans: Cannizzaro

Sol: Disproportionation occurs. It is an example of intramolecular Cannizzaro reaction

116.Ans: 3

The product contains two similar chiral carbon atoms. So 3 optical isomers are possible


117.Ans: t-butyl benzene

Sol: t-Butyl benzene does not undergo oxidation to form benzoic acid

118.Ans: S-configuration

Sol: Hofmann rearrangement is an intramolecular rearrangement. Retention of conjugation occurs

119.Ans: NH_2OH followed by dehydration with acetic anhydride

Sol:

120.Ans:

Sol: group is meta directing