Sections A – Data Interpretation and Quantitative Ability

 

11.  In an equilateral triangle ABC, whose length of each side is 3 cm, D is a point on BC such that BD = 1/2 CD. What is the length of AD?

       A.    cm         B.    cm         C.   cm         D.   cm                 E.    None of the above

 

Solution:

It is given that BD = CD.

 

 

 

 

 

 

 

 

 

Given that BC = 3

Þ BD + CD = 3

Þ BD + 2BD = 3

Þ BD = 1 and CD = 2

Let us drop a perpendicular AE to BC meeting BC at E.

Now BE = EC = cm [ ABC is an equilateral triangle].

 

In DAEC, AC2 - EC2 = AE2      ®   (1) and

In DADE, AD2 - DE2 = AE2      ®   (2)

Equating (1) and (2), we get AC2 - EC2 = AD2 - DE2

Or. AC2 - AD2 = EC2 - DE2

Or. AC2 - AD2 = (EC + DE) (EC - DE)

Or, AC2 - AD2 = (CD) (BD)

[EC = BE and BE - DE = BD]

Or, 32 - AD2 = (2) (1)

Or, AD = cm.                                                                                                                     Choice (C)